CORROSION AND CORROSION PROTECTION

TYPES OF CORROSION

- SURFACE RUSTING
- PITTING CORROSION
- STRESS CORROSION
- HYDROGEN EMBRITTLEMENT

ANODIC CORROSION

- NEEDS:
- A DIFFERENCE IN ELECTRIC POTENTIAL
- THE PRESENCE OF AN ELECTROLYTE
- OXYGEN

FORMATION OF CORROSION ELEMENTS

DIAGRAM OF POURBAIX

HYDROGEN EMBRITTLEMENT

- FAVORED BY:
- HIGH STRESS
- PRESENCE OF WATER
- DEFFICIENCY OF OXYGEN
- LOCALLY LOWER PH-VALUE
- PRESENCE OF SULFIDES
- HIGH STRENGTH STEEL

RATE OF CORROSION

- **DEPENDS ON:**
- RESISTANCE OF THE ELECTROLYTE
- DIFFERENCE IN ELECTRIC POTENTIAL
- PRESENCE OF AERATED ELEMENTS
- **♦ TEMPERATURE**
- **TYPE OF STEEL**

FIP ACCELERATED CORROSION TESTS BY LUCIUS PITKINS IN A 20% AMMONIUM THIOCYANIDE @ 50 C STRESSED TO 0.8 Fu

2 2				Mechanical properties								
Eber	Specimen	Diam	Cross- sectional area		Yield strength		Time to failure — t (hr), (f) = percentile in a gaussologarithmic plot				Remarks	
	Material	mm	mm²	N/mm ²	N/mm²	min	mex	t(f) = 10	115) = 50 1(f)=90	
2	130/145 SiCr HT bar	9.08	64.8	1481	1383	198.35, 211.20 (a), 211.30				(a) Specimen did not fail (3 specimens rested)		
3	130/145 SiCr HT bar (D)	9.15	64	1462	1374	5.25	> 200	3.2		29	> 200	(9 specimens tested)
4*	110/125 SiCr HT bar	31.47	777.8	1268	1120						Specimens did not fail (3 specimens tested)	
6	ASTM A 722 Bar (D)	32.2	814.3	1156	1038	/ 14 / 14 /					Specimens did not fail (2 specimens tested)	
13	Center wire of 7 wire strand (U.S.)	5.24	21.57	1914	1737	7.1, 2.7					(2 specimens tested)	
14	ASTM A 416 7 wire strand (U.S.)	9.52	51.77	2000		4.8, 6.2				(2 specimens tested)		

ACCUMULATED FREQUENCY OF CORROSION DAMAGES

CORROSION PROTECTION DECISION TREE

DEFINITION OF AGGRESSIVE GROUND

Ground is aggressive when:

- •pH less than 4.5
- •Resistivity less than 2,000 ohm-cm
- Chemical composition (sulfites)
- Ground water

AGGRESSIVITY OF SOILS

CORROSION PROTECTION REQUIREMENTS

	PROTECTION REQUIREMENTS						
CLASS	ANCHORAGE	UNBONDED LENGTH	TENDON BOND LENGTH				
I ENCAPSULATED TENDON	1. TRUMPET 2. COVER IF EXPOSED	1. GREASE-FILLED SHEATH, OR 2. GROUT-FILLED SHEATH, OR 3. EPOXY FOR FULLY BONDED ANCHORS	1. GROUT-FILLED ENCAPSULATION, OR 2. EPOXY				
II GROUT PROTECTED TENDON	1. TRUMPET 2. COVER IF EXPOSED	1. GREASE-FILLED SHEATH, OR 2. HEAT SHRINK SLEEVE	GROUT				

CLASS I & CLASS II PROTECTION

Figure 5.1 Class I Protection – Encapsulated Anchor

MULTI-STRAND ANCHORS

PROPERTIES FOR PLASTIC SHEATHING

Properties	Unit	high o	density PVC test method according DIN	PRODUCTION OF STREET	test method according DIN		density PE test method according DIN
yield stress (tensile strength)	N/mm ²	50	53455	33)	53455	21-28	53455
strain at yield stress	8	12	53455	20}	ISO/R 527	16	ISO/R 527
ultimate strength	N/mm ²	>45 e.g.53	53455	41	speed = 125 mm/min	32-40	method E
strain at ultimate strength	8	100	53455	800		800	53455
bending creep modulus (1 min)	N/mm ²	2950	53457	1200	53457	1500	53457
Shore hardness		D 83	53505	D 62	53505	D 60	53505

PROPERTIES OF CORROSION PROOF COMPOUNDS

Property	Units	Test method	Proposed acceptence values		
content of free sulphur and sulphides	ppm	DIN 51759 ASTM D-130-75	≤ 10		
content of ionic chlorides nitrates rhodanides	ppm "	ASTM D512 ASTM D992 DIN 51576	≤ 10 ≤ 10 ≤ 10		
spec. resistivity	Ω.cm	DIN 53482	≥10		
water absorption 0.1 N KOH, after 30 days	%	DIN 53495	≤ 2		
saponification (acidity)	mg KOH/g	DIN 53401 ASTM D 94-91	≤ 10		
deciling on filter paper at 50° C ,after 7 days	dia mm	no standard specimendia 20 mm	≤ 100		
penetration depth at deoiling test on hardened cement grout at 50° C after 7 days	dia mm	no standard	≤ 2		
thermal stability, 24h	°C	10% inclined channel 26x18 mm with sieve at lower end, mesh width 0,5 mm	≥40		
drop point	°c	DIN 51801	≥ 60		

GREASE

CONSISTS OF:

 PETROLEUM OIL
 CORROSION PREVENTIVE ADDITIVES
 ORGANIC SOAP

RESISTANT TO BUT NOT INSOLUBLE IN WATER

WAX

CONSISTS OF:
 MICROCRYSTALLINE WAX (HYDROCARBONS)
 PETROLATUMS (OILS AS A SOFTENER)

HIGH MELT POINT INERT IN CONTACT WITH WATER

WAX VERSUS GREASE

- WAX DOES NOT DEOIL IN HOT TEMPERATURES
- WAX DOES NOT LOOSE OIL WHEN IN CONTACT WITH GROUT
- WAX DOES NOT DECOMPOSE IN WATER
- WAX MORE RESISTANT TO HYDROSTATIC PRESSURE

5 SAMPLES, October 2000

5 SAMPLES, October 2000

5 SAMPLES, October 2000

WATER IMMERSION TEST

EPOXY COATED STRAND

EPOXY-COATED STRAND,

ASTM A 882

- Individual wires are coated(15-40mil thickness)
- Special design wedge
- Grid to enhance bond to grout
- Good corrosion protection(no need for corrugated sheathing)
- Smaller drilled hole diameter
- Prefabricated, ready for installation
- Special un-coiler and stressing equipment
- Large capacity ground anchors (Retrofit/New)
- Post Tensioning(Cable Stay bridges)

CORROSION AND CORROSION PROTECTION